

LED PCB Design Checklist

Complete Verification Guide for Professional LED Circuit Board Design

Version: 2.0

Date: January 2026

Purpose: Systematic verification checklist ensuring LED PCB designs meet thermal, electrical, and manufacturing requirements

Section 1: Project Initialization

1.1 Requirements Definition

- **LED specifications documented**
 - Part number, manufacturer
 - Forward voltage (Vf) min/typ/max
 - Forward current (If) rated and maximum
 - Power rating per LED
 - Thermal resistance (Rth j-c)
 - Color temperature / wavelength
 - Beam angle specifications
- **Total power calculation completed**
 - Individual LED power: ___W each
 - Total LED count: ___
 - Total electrical power: ___W
 - Total thermal power: ___W (60-70% of electrical)
 - Power density: ___W/cm²
- **Operating environment defined**
 - Ambient temperature range: ___ to ___°C
 - Humidity conditions

- Vibration/shock requirements
- Indoor/outdoor classification
- Enclosure type (sealed, ventilated, open)
- **Target specifications established**
 - Target junction temperature: <__°C (recommend <75-85°C)
 - Expected lifespan: __hours
 - Warranty period: __years
 - Budget constraints per board: \$__

Section 2: Thermal Design Calculations

2.1 Junction Temperature Prediction

- **Heat dissipation calculated for each LED**
 - Formula verified: $P_{\text{thermal}} = P_{\text{electrical}} \times (1 - \text{Efficiency})$
 - LED efficiency assumed: __%
 - Safety margin included (15-20%)
 - Individual LED thermal power: __W
- **Thermal resistance chain calculated**
 - $R_{\text{th,j-c}}$ (LED datasheet): __°C/W
 - $R_{\text{th,c-pcb}}$ (solder joint): ~1-3°C/W
 - $R_{\text{th,pcb}}$ (through dielectric): __°C/W
 - $R_{\text{th,interface}}$ (TIM): __°C/W
 - $R_{\text{th,heatsink}}$ (if applicable): __°C/W
 - **Total R_{th} :** __°C/W
- **Junction temperature estimated**
 - Formula: $T_j = T_{\text{ambient}} + (P_{\text{thermal}} \times R_{\text{th, total}})$
 - Worst-case ambient: __°C
 - Calculated T_j : __°C

- Verification: $T_j < \text{Target temperature?}$ **YES / NO**
- If NO: Redesign substrate or add cooling

2.2 Power Density Analysis

- **PCB area determined:** ____cm²
- **Power density calculated:** ____W/cm²
- **Substrate selection guideline checked:**
 - <0.5 W/cm²: Aluminum adequate
 - 0.5-1.5 W/cm²: Aluminum recommended
 - 1.5-3 W/cm²: Copper or enhanced cooling
 - 3 W/cm²: Ceramic or active cooling

Section 3: Substrate Selection

3.1 Material Selection

- **Substrate type selected:**
 - FR4 (only for <0.5W per LED)
 - Aluminum MCPCB (most common)
 - Copper core MCPCB (high power)
 - Aluminum oxide ceramic (premium)
 - Aluminum nitride ceramic (ultimate)
 - Flexible (low power only)
 - Hybrid (specify zones)
- **Substrate specifications documented**
 - Base material: ____
 - Base thickness: ____mm
 - Thermal conductivity (through dielectric): ____W/mK
 - Dielectric thickness: ____μm
 - Dielectric breakdown voltage: ____V

- **Selection rationale documented**

- Thermal requirements met
- Cost within budget
- Availability confirmed
- Lead time acceptable

3.2 Copper Specification

- **Copper weight selected:**

- 1oz (35µm) - only if low power
- **2oz (70µm) - RECOMMENDED for most LED applications**
- 3oz (105µm) - high power applications

- **Justification documented:**

- Thermal spreading requirements
- Current carrying capacity
- Cost-benefit analysis

Section 4: Thermal Management Design

4.1 Copper Distribution

- **Copper pour maximized**

- All unused area filled with copper (solid fills)
- No hatched/meshed fills in thermal zones
- Continuous copper planes (no unnecessary breaks)
- Copper extends to board edges where practical

- **LED thermal zones designed**

- Solid copper under each LED (minimum)
- Copper extends 15-30mm beyond LED in all directions
- Thermal pathways to heat sink/mounting points
- No narrow bottlenecks in thermal paths

4.2 Thermal Via Design

- **Via quantity calculated per LED**
 - LED power: ___W
 - Target via count: ___ (guideline: 1.5-2.5 vias per watt)
 - Actual via count: ___
 - Verification: Adequate? **YES / NO**
- **Via specifications defined**
 - Via drill diameter: ___mm (typical 0.3-0.5mm)
 - Via pad diameter: ___mm
 - Via spacing: ___mm (typical 1.0-1.5mm)
 - Pattern: [] Grid [] Staggered
- **Via placement designed**
 - Vias cover entire LED thermal pad area
 - Vias extend slightly beyond pad edges
 - Center area allows solder flow (avoid via in exact center)
 - Via arrays positioned for optimal thermal transfer
- **Via treatment specified**
 - Open (standard, lowest cost)
 - Tented (solder mask covered)
 - Plugged (non-conductive epoxy)
 - Filled (conductive epoxy, best thermal)

4.3 LED Placement and Spacing

- **LED spacing verified**
 - Minimum spacing met for LED power level:
 - <1W: 15-20mm center-to-center
 - 1-3W: 30-40mm center-to-center
 - 3-5W: 45-60mm center-to-center

- 5W: 60mm+ center-to-center
- Edge clearance: ___mm (minimum 15mm recommended)
- **Thermal interaction evaluated**
 - Thermal zone overlap minimal
 - Hot spots identified and mitigated
 - Symmetrical layout for uniform temperature
- **Optical requirements satisfied**
 - Light distribution uniform
 - Beam overlap appropriate
 - Color mixing adequate (RGB applications)

4.4 Heat Sink Integration

- **Heat sink requirements determined**
 - Heat sink needed? **YES / NO**
 - If YES:
 - Required thermal resistance: ___ °C/W
 - Heat sink type: ___
 - Attachment method: [] Screws [] Clips [] Adhesive
- **Thermal interface specified**
 - TIM type: [] Grease [] Pad [] Phase-change [] Adhesive
 - Thermal conductivity: ___ W/mK
 - Thickness: ___mm
 - Application method: ___
- **Mounting design completed**
 - Mounting hole locations defined
 - Clamping pressure adequate (2-5 psi)
 - Contact area maximized
 - Surface flatness specified (<0.1mm)

Section 5: Electrical Design

5.1 LED Circuit Topology

- **Topology selected:**
 - Series strings
 - Parallel arrays
 - Series-parallel combination
 - Rationale documented
- **String calculations completed**
 - LEDs per string: ____
 - Number of strings: ____
 - String voltage (min/typ/max): ____ / ____ / ____V
 - Current per string: ____mA
 - Total current: ____A
- **Current balancing method defined**
 - Series (inherent balancing)
 - Resistors per LED/string
 - Active current regulators
 - Separate drivers per string

5.2 LED Driver Selection

- **Driver specifications**
 - Part number: ____
 - Output current: ____mA (matches LED requirements)
 - Output voltage range: ____ to ____V (accommodates string voltage)
 - Efficiency: ____% (>85% recommended)
 - Dimming support: [] PWM [] Analog [] None
- **Protection features verified**

- Over-voltage protection: **YES / NO**
- Over-current protection: **YES / NO**
- Thermal shutdown: **YES / NO**
- Short-circuit protection: **YES / NO**
- **Driver placement planned**
 - Location: ____ (away from high-power LEDs preferred)
 - Thermal management: ____
 - EMI considerations: ____

5.3 Trace Width Calculations

- **Power trace widths calculated**
 - LED string current: ____A
 - Trace length: ____mm
 - Copper weight: ____oz
 - Calculated minimum width: ____mm
 - Design width (with margin): ____mm
 - Verification: IPC-2152 compliant? **YES / NO**
- **Voltage drop verified**
 - Calculated voltage drop: ____mV
 - Percentage of LED voltage: ____%
 - Acceptable (<2% target)? **YES / NO**
- **Ground return paths adequate**
 - Ground trace widths match power traces
 - Ground plane used where possible
 - Multiple ground return paths provided

5.4 Protection Circuits

- **Over-current protection implemented**
 - Driver built-in current limit

- Fuse (rating: ___mA/A)
- Resettable fuse (PPTC)
- Active current limiting circuit
- **ESD protection added**
 - TVS diodes at power input (breakdown voltage: ___V)
 - TVS diodes at control inputs
 - Series resistors for current limiting
 - ESD rating target: ___kV (IEC 61000-4-2)

Section 6: PCB Layout

6.1 Component Placement

- **LED positions optimized**
 - Thermal requirements met
 - Optical requirements met
 - Spacing verified
 - Orientation consistent and marked
- **Driver IC placement optimized**
 - Thermal isolation from LEDs
 - Support components nearby (<10-15mm)
 - EMI considerations addressed
 - Thermal relief provided
- **Passive components placed**
 - Decoupling caps close to pins (<5-10mm)
 - Bulk caps near driver output (<25mm)
 - Current sense resistors properly located
 - Component values labeled (optional)
- **Connectors positioned**

- Accessible locations
- Mechanical support adequate
- Clearance for mating/cable bending
- Polarity clearly marked

6.2 Routing

- **Power trace routing completed**
 - Adequate width (per calculations)
 - Direct paths (minimal length)
 - No unnecessary narrow sections
 - Solid copper pours integrated
- **Signal routing completed**
 - Control signals routed away from switching nodes
 - PWM traces short and direct
 - Ground reference provided
 - Cross-talk minimized
- **Ground design implemented**
 - Ground plane on bottom layer (or designated layer)
 - Ground plane continuous (no breaks)
 - Via stitching every 20-40mm
 - All grounds connect to plane

6.3 EMI/EMC Considerations

- **Layout optimized for low EMI**
 - Switching node loop area minimized
 - Driver components tightly grouped
 - Input/output filtering added
 - Ground plane provides shielding
- **External connections protected**

- Ferrite beads on cables (if needed)
- ESD protection at connectors
- Twisted pair for LED outputs (optional)

Section 7: Design Rules and Manufacturing

7.1 Design Rule Compliance

- **Trace width and spacing**
 - Minimum trace width: __mm (verify manufacturable)
 - Minimum spacing: __mm (voltage-appropriate)
 - Power trace widths per calculations
 - Design rule check (DRC) passed: **YES / NO**
- **Via specifications**
 - Drill size: __mm
 - Pad diameter: __mm
 - Annular ring: __mm (>0.10mm minimum)
 - Clearances adequate
- **Solder mask specifications**
 - Minimum dam between pads: __mm (>0.10mm)
 - Solder mask expansion: __mm per side (typically 0.10mm)
 - Vias tented where required
 - Color: __ (green standard)
- **Silkscreen specifications**
 - Text height: __mm (>1.0mm minimum, 1.5mm recommended)
 - Line width: __mm (>0.15mm minimum, 0.20mm recommended)
 - Component designators clear
 - Polarity marks present
 - Version/revision marked

7.2 Design for Manufacturing (DFM)

- **Manufacturer capabilities verified**
 - Minimum feature sizes within capabilities
 - Copper weight available
 - Substrate type offered
 - Lead time acceptable
- **Manufacturing notes prepared**
 - Substrate specification clear
 - Copper weight specified
 - Surface finish specified (HASL, ENIG, OSP)
 - Via treatment specified
 - Special instructions documented
- ****Panelization considered****
- Production quantities determine panelization
- Tooling holes/fiducials included
- Breakaway tabs/v-score specified
- Panel size optimized for cost
- **7.3 Assembly Considerations**
- **Component package selection**
 - Standard packages used where possible
 - Pick-and-place compatible
 - Hand assembly feasible (if low volume)
 - Thermal pad design appropriate
- **Assembly documentation prepared**
 - Bill of Materials (BOM) complete
 - Assembly drawing created
 - Pick-and-place file generated

- Component placement list provided
- **Solder paste considerations**
- Stencil aperture design appropriate
- Thermal vias don't cause solder wicking (tentied/plugged)
- Adequate solder volume for thermal pads
- Reflow profile compatible with all components
- **Test point access**
- Test points at key nodes (power, LED strings, control signals)
- 0.1" spacing for probe clips
- Accessible from top side
- Clearly labeled
- _____
- **Section 8: Thermal Simulation (Recommended for >10W designs)**
- **8.1 Simulation Setup**
- **Thermal model created**
- Software used: ____
- PCB geometry modeled accurately
- Material properties entered (substrate, copper, LEDs)
- Boundary conditions defined (ambient temp, convection)
- **Heat sources defined**
- LED power dissipation per component: ____W
- Driver heat dissipation: ____W
- Total heat load: ____W
- Heat distribution verified
- **Cooling conditions modeled**
- Natural convection: ____W/m²·K
- Forced air (if applicable): ____m/s, ____CFM

- Heat sink modeled (if present)
- Thermal interface properties included

- **8.2 Simulation Results**

- **Temperature distribution analyzed**
- Maximum LED junction temperature: ____ °C
- Target junction temperature: ____ °C

- Verification: Within limits? **YES / NO**

- Hot spots identified: ____

- **Thermal pathways verified**

- Heat flow paths visualized
- Bottlenecks identified
- Thermal via effectiveness confirmed
- Heat spreading adequate

- **Design optimization (if needed)**

- Increased copper thickness: **YES / NO**
- Added thermal vias: **YES / NO**
- Changed LED spacing: **YES / NO**
- Upgraded substrate: **YES / NO**
- Added heat sink: **YES / NO**

- **8.3 Worst-Case Analysis**

- **Maximum ambient temperature simulated: ____ °C**

- **Maximum power condition verified**

- **Thermal margin calculated: ____ °C below T_{j_max}**

- **Safety margin adequate (>10-15°C): YES / NO**

- _____

- **Section 9: Pre-Fabrication Review**

- **9.1 Design Files Check**

- **Gerber files generated**
 - Top copper layer
 - Bottom copper layer (if applicable)
 - Top solder mask
 - Bottom solder mask
 - Top silkscreen
 - Bottom silkscreen (if applicable)
 - Drill file
 - Board outline
- **File verification**
 - Gerber viewer check performed
 - All layers aligned correctly
 - No missing features
 - Drill hits match pads
- **Manufacturing documentation**
 - Fabrication drawing created
 - Layer stack-up documented
 - Material specifications clear
 - Special instructions included
 - Revision number/date marked
- **9.2 Design Review Checklist**
 - **Electrical review**
 - Schematic matches layout
 - Net connections verified
 - Polarity correct on all components
 - Power supply voltages correct
 - No floating nets

- **Thermal review**
 - All thermal calculations documented
 - Thermal vias under all LEDs
 - Copper pours maximized
 - Heat sink interface designed
- **Mechanical review**
 - Board dimensions correct
 - Mounting holes positioned correctly
 - Connector heights verified
 - Enclosure fit confirmed
 - Weight acceptable
- **Manufacturing review**
 - DFM check passed
 - All design rules met
 - Standard components used
 - Assembly complexity acceptable
 - Cost estimate within budget
- **9.3 Peer Review**
 - **Design reviewed by colleague/expert**
 - Reviewer name: _____
 - Review date: _____
 - Issues identified: _____
 - Issues resolved: **YES / NO**
 - **Critical items verified**
 - LED polarity correct
 - Power connections correct
 - Driver configuration verified

- Thermal design adequate
- Safety/regulatory compliance
- _____
- **Section 10: Prototype Phase**
- **10.1 Prototype Order**
- **Manufacturer selected**
- Company: _____
- Contact: _____
- Quote received: \$_____
- Lead time: _____ days
- Minimum order quantity: _____
- **Order specifications**
- Quantity: _____ boards
- Substrate: _____
- Copper weight: _____ oz
- Surface finish: _____
- Solder mask color: _____
- Silkscreen color: _____
- Via treatment: _____
- Special requirements: _____
- **Assembly planning**
- In-house assembly
- Contract assembly
- Components ordered: **YES / NO**
- Assembly timeline: _____
- **10.2 Prototype Inspection (Upon Receipt)**
- **Visual inspection**

- Board dimensions correct
- No visible damage
- Solder mask quality good
- Silkscreen legible
- Copper finish acceptable
- **Electrical inspection**
- Continuity test passed
- No shorts between nets
- Via plating intact
- Pad adhesion good
- **Thermal inspection**
- Thermal vias present and plated
- Copper pours intact
- Metal base flat (if MCPCB)
- Thermal pad quality good
- **10.3 Assembly Testing**
- **Components assembled**
- LEDs mounted correctly (polarity verified)
- Driver IC soldered properly
- Passive components in place
- Connectors attached securely
- **Assembly quality check**
- No solder bridges
- No cold solder joints
- Component alignment good
- No missing components
- ---

- **Section 11: Functional Testing**
- **11.1 Initial Power-Up**
- **Pre-power checks**
 - Visual inspection passed
 - Polarity verified
 - No obvious shorts
 - Correct input voltage source ready
- **First power-up**
 - Input voltage: ___V (start at low voltage/current limit)
 - Current consumption: ___mA (verify reasonable)
 - No smoke/smell/overheating
 - LEDs illuminate: **YES / NO**
- **Basic functionality**
 - All LEDs light up
 - Brightness uniform
 - Color correct
 - Dimming works (if applicable)
- **11.2 Electrical Measurements**
- **Voltage measurements**
 - Input voltage: ___V (verify correct)
 - LED string voltage: ___V (within expected range?)
 - Driver output voltage: ___V
 - Any unexpected voltages: ___
- **Current measurements**
 - Total input current: ___mA
 - LED string current: ___mA (matches design?)
 - Driver current consumption: ___mA

- Efficiency: ___%
- **LED forward voltage**
- Measure individual LED Vf: ___ to ___V
- Within datasheet range: **YES / NO**
- String voltage sum correct: **YES / NO**
- **11.3 Thermal Testing**
- **Critical for LED PCB validation!**
- **Temperature measurement setup**
- Method: [] Thermal camera [] Thermocouple [] IR thermometer
- Ambient temperature: ___°C
- Stabilization time: ___ minutes (30+ minutes recommended)
- Operating at full power: **YES / NO**
- **LED junction temperature measurement**
- Method used: [] Thermal camera [] Vf method [] Datasheet calculation
- Maximum Tj measured: ___°C
- Target Tj: ___°C
- Verification: Tj < Target? **YES / NO**
- Thermal margin: ___°C
- **PCB temperature distribution**
- Hottest spot location: ___
- Hottest spot temperature: ___°C
- Temperature uniformity: Good / Acceptable / Poor
- Hot spots identified: ___
- **Driver IC temperature**
- Driver case temperature: ___°C
- Maximum allowed: ___°C (datasheet)
- Adequate cooling: **YES / NO**

- **Thermal performance verification**
 - Measured vs. predicted temperatures:
 - Predicted T_j: ____ °C
 - Measured T_j: ____ °C
 - Difference: ____ °C (should be within ±10-15°C)
 - Thermal design adequate: **YES / NO**
- **11.4 Long-Term Stability Testing**
 - **Burn-in test**
 - Duration: ____ hours (24-48 hours recommended)
 - Operating conditions: Full power, elevated ambient
 - Temperature monitoring: Continuous / Periodic
 - No failures observed: **YES / NO**
 - **Thermal cycling test (optional but recommended)**
 - Number of cycles: ____
 - Temperature range: ____ to ____ °C
 - No solder joint failures: **YES / NO**
 - No LED performance degradation: **YES / NO**
- **11.5 EMI/EMC Testing (If Required)**
 - **Pre-compliance testing**
 - Conducted emissions measured
 - Radiated emissions measured
 - Results within limits: **YES / NO**
 - Mitigation needed: ____
 - **ESD testing**
 - Contact discharge: ____ kV (target ≥4kV)
 - Air discharge: ____ kV (target ≥8kV)
 - Protection adequate: **YES / NO**

- _____
- **Section 12: Design Validation**
- **12.1 Performance Verification**
- **Specifications met**
- Light output: ___lumens (target: ___)
- Efficiency: ___% (target: ___)
- Power consumption: ___W (target: ___)
- Color temperature: ___K (target: ___)
- All specifications within tolerance: **YES / NO**
- **Thermal performance validated**
- Junction temperature: **$^{\circ}\text{C}$ (target: $^{\circ}\text{C}$)** ✓
- Thermal margin adequate: **YES / NO**
- Expected lifespan: ___hours (based on T_j)
- Meets requirement: **YES / NO**
- **Reliability assessment**
- No failures during testing: **YES / NO**
- Thermal stress acceptable
- Electrical stress acceptable
- Mechanical integrity good
- **12.2 Issues and Resolutions**
- **Issues identified during testing:**
- Issue: ___
- Severity: [] Critical [] Major [] Minor
- Resolution: ___
- Status: [] Resolved [] Pending [] Deferred
- Issue: ___

- Severity: [] Critical [] Major [] Minor
- Resolution: __
- Status: [] Resolved [] Pending [] Deferred
- Issue: __
- Severity: [] Critical [] Major [] Minor
- Resolution: __
- Status: [] Resolved [] Pending [] Deferred
- **All critical issues resolved:** YES / NO
- **Design revision needed:** YES / NO
- If YES: Revision number: __
- **12.3 Production Readiness**
- **Prototype validation complete**
- All tests passed
- Performance meets requirements
- Reliability demonstrated
- Ready for production: YES / NO
- **Manufacturing documentation finalized**
- Production Gerbers approved
- BOM finalized
- Assembly instructions complete
- Test procedures documented
- Quality acceptance criteria defined
- **Cost and timeline confirmed**
- Production unit cost: \$__
- Lead time: __ weeks
- MOQ: __ units
- Within project budget: YES / NO

- _____
- **Section 13: Final Sign-Off**
- **13.1 Design Approval**
- **Design Engineer:** _____ Date: _____
- **Thermal Engineer:** _____ Date: _____
(If applicable)
- **Project Manager:** _____ Date: _____
- **Quality Engineer:** _____ Date: _____
- **13.2 Ready for Production**
- All checklist items completed
- All tests passed
- All approvals obtained
- Manufacturing documentation ready
- **APPROVED FOR PRODUCTION**
- **Appendix A: Quick Reference Tables**
- **LED PCB Substrate Selection Guide**
- **Power Density** • **Ambient Temp** • **Recommended Substrate**
- <0.5 W/cm² • <30°C • Aluminum MCPCB
- 0.5-1.5 W/cm² • <50°C • Aluminum MCPCB (2oz copper)
- 1.5-3 W/cm² • <50°C • Copper core or forced cooling
- >3 W/cm² • Any • Ceramic or active cooling
- Any • >70°C • Ceramic substrate
- **Thermal Via Guidelines**
- **LED Power** • **Recommended Via Count** • **Via Pattern**
- <0.5W • 2-4 vias • Simple array

- **LED Power**
- 0.5-1W
- 1-3W
- 3-5W
- >5W
- **Recommended Via Count**
- 4-6 vias
- 6-12 vias
- 12-20 vias
- 20+ vias
- **Via Pattern**
- Grid under pad
- Dense grid
- Full coverage
- Maximum density

- **Trace Width Reference (2oz Copper, 10°C Rise)**

- **Current**
- 350mA
- 700mA
- 1A
- 2A
- 3A+
- **Minimum Width**
- 0.5mm
- 1.0mm
- 1.5mm
- 2.5mm
- 4.0mm
- Use power plane
- **Recommended Width**
- 1.0mm
- 1.5mm
- 2.5mm
- 4.0mm
- 5mm+ trace

- **LED Spacing Guidelines**

- **LED Power**
- <0.5W
- 0.5-1W
- 1-3W
- 3-5W
- >5W
- **Minimum Center-to-Center**
- 15-20mm
- 20-30mm
- 30-40mm
- 45-60mm
- 60mm+

- **Appendix B: Common Issues and Solutions**

- **Problem: LEDs Overheat ($T_j > \text{Target}$)**

- **Possible Causes:**

- Insufficient thermal vias
- Inadequate copper pour

- Poor LED spacing
- Wrong substrate selection
- Inadequate heat sink

- **Solutions:**

- Add more thermal vias (double the count)
- Increase copper thickness to 3oz
- Increase LED spacing by 30-50%
- Upgrade to copper core substrate
- Add external heat sink with TIM
- Reduce LED drive current by 20-30%

- **Problem: Uneven LED Brightness**

- **Possible Causes:**

- Parallel LED connection without current balancing
- V_f mismatch between LEDs
- Poor current regulation
- Thermal variation causing V_f shift

- **Solutions:**

- Use series string topology
- Add current balancing resistors
- Purchase LEDs from same manufacturing bin
- Improve thermal uniformity
- Use separate constant-current drivers per string

- **Problem: High Voltage Drop in Traces**

- **Possible Causes:**

- Traces too narrow
- Traces too long
- Inadequate copper weight

- Poor connections/vias

- **Solutions:**

- Widen power traces (double width reduces drop by 50%)
- Shorten trace routing paths
- Upgrade to 2oz or 3oz copper
- Use power planes instead of traces
- Add parallel traces for high current paths

- **Problem: LED Flicker During Dimming**

- **Possible Causes:**

- PWM frequency too low (<500Hz)
- Capacitance on LED causing exponential decay
- Driver PWM response too slow
- Noise on PWM signal

- **Solutions:**

- Increase PWM frequency to 2-5kHz minimum
- Remove/reduce output capacitance
- Select driver with fast PWM response specs
- Filter PWM control signal (100Ω + 100nF)
- Use analog dimming instead of PWM

- **Problem: EMI/EMC Compliance Failure**

- **Possible Causes:**

- Large switching node loop area
- No input/output filtering
- Long LED cable without ferrite
- No ground plane
- Driver components too spread out

- **Solutions:**

- Minimize switching node loop area
- Add common-mode choke at input
- Add output capacitors close to LEDs
- Implement solid ground plane
- Add ferrite beads on cables
- Group switching components tightly
- Use metal enclosure grounded to PCB
- **Problem: Solder Wicking into Thermal Vias**
- **Possible Causes:**
 - Vias not tented/plugged
 - Too much solder paste
 - Vias too large
- **Solutions:**
 - Specify tented vias (solder mask over)
 - Plug vias with epoxy
 - Reduce solder paste volume (smaller aperture)
 - Use smaller via diameter (0.3mm instead of 0.5mm)
- **Problem: Poor Thermal Contact to Heat Sink**
- **Possible Causes:**
 - Air gaps between PCB and heat sink
 - Inadequate clamping pressure
 - Poor thermal interface material
 - Warped PCB or heat sink
- **Solutions:**
 - Use compliant thermal pad to fill gaps
 - Increase number of mounting screws
 - Torque screws to specification (0.5-1.5 N·m)

- Specify flatness tolerance (<0.1mm)
- Use phase-change TIM
- Add more mounting points for large boards
- ---

- **Appendix C: Useful Formulas**

- **Thermal Calculations**

- **LED Thermal Power Dissipation:**

- $P_{\text{thermal}} = P_{\text{electrical}} \times (1 - \text{Efficiency})$
- $P_{\text{thermal}} = V_f \times I_f \times (1 - \eta)$

- **Junction Temperature:**

- $T_j = T_{\text{ambient}} + (P_{\text{thermal}} \times R_{\text{th_total}})$
- $R_{\text{th_total}} = R_{\text{th_j-c}} + R_{\text{th_c-pcb}} + R_{\text{th_pcb}} + R_{\text{th_interface}} + R_{\text{th_sink}}$

- **Thermal Resistance:**

- $R_{\text{th}} = \Delta T / P$
- $\Delta T = \text{Temperature rise (}^{\circ}\text{C)}$
- $P = \text{Power dissipated (W)}$

- **Electrical Calculations**

- **Resistor Current Limiting:**

- $R = (V_{\text{supply}} - \text{LED_}V_f) / \text{LED_}I_f$
- $P_{\text{resistor}} = (V_{\text{supply}} - V_f) \times I_f$

- **Trace Resistance:**

- $R_{\text{trace}} (\text{m}\Omega) = 0.5 \times L(\text{mm}) / [W(\text{mm}) \times T(\text{oz})]$
- $L = \text{length, } W = \text{width, } T = \text{copper thickness}$

- **Voltage Drop:**

- $V_{\text{drop}} = I \times R_{\text{trace}}$
- $V_{\text{drop}} = I \times (\rho \times L / A)$
- $\rho = \text{copper resistivity } (1.72 \times 10^{-8} \ \Omega \cdot \text{m})$

- **Power Density:**

- $\text{Power Density (W/cm}^2\text{)} = \text{Total Power (W)} / \text{PCB Area (cm}^2\text{)}$

- **LED String Calculations**

- **Maximum LEDs in Series:**

- $\text{Max LEDs} = (\text{Driver Vmax} - \text{Headroom}) / \text{LED Vf typical}$

- **String Voltage Range:**

- $\text{V string min} = \text{LEDs per string} \times \text{LED Vf min}$

- $\text{V string max} = \text{LEDs per string} \times \text{LED Vf max}$

- **Total Current (Parallel Strings):**

- $\text{I total} = \text{Number of strings} \times \text{I per string}$

- ---

- **Appendix D: Online Tools and Resources**

- **Trace Width Calculators**

- **CircuitCalculator.com** - PCB Trace Width Calculator (IPC-2152)

- **Saturn PCB Toolkit** - Professional calculator suite (free download)

- **DigiKey Calculator** - Integrated with component search

- **4PCB Calculator** - Simple web-based tool

- **Thermal Simulation Software**

- **ANSYS Icepak** - Professional FEA thermal simulation

- **FloTHERM** - Electronics cooling simulation

- **SolidWorks Flow Simulation** - Integrated with CAD

- **SimScale** - Cloud-based thermal simulation (free tier available)

- **PCB Design Software**

- **Altium Designer** - Industry standard (commercial)

- **KiCad** - Open source, fully featured (free)

- **Eagle/Fusion 360** - User-friendly (Autodesk)

- **EasyEDA** - Web-based, free option

- **LED Datasheet Resources**
- **Cree LED** - www.cree.com
- **Lumileds** - www.lumileds.com
- **Nichia** - www.nichia.com
- **Osram Opto Semiconductors** - www.osram.com
- **Samsung LED** - www.samsung.com/led
- **Standards and References**
 - **IPC-2152** - Current Carrying Capacity Standards
 - **IPC-6012** - Rigid PCB Qualification Standard
 - **IPC-7095** - Design and Assembly Process for BGAs
 - **IEC 61000-4-2** - ESD Immunity Testing
 - **CISPR 15** - EMC Requirements for Lighting Equipment
- ---
- **Appendix E: Glossary of Terms**
 - **MCPCB** - Metal Core Printed Circuit Board, LED PCB with aluminum/copper base
 - **T_j** - Junction Temperature, operating temperature of LED semiconductor die
 - **V_f** - Forward Voltage, voltage drop across LED when conducting
 - **I_f** - Forward Current, current through LED for specified brightness
 - **R_{th}** - Thermal Resistance, resistance to heat flow (°C/W)
 - **TIM** - Thermal Interface Material, improves heat transfer between surfaces
 - **CTE** - Coefficient of Thermal Expansion, material expansion per degree
 - **DRC** - Design Rule Check, automated verification of design rules
 - **DFM** - Design for Manufacturing, design practices for manufacturability
 - **PWM** - Pulse Width Modulation, dimming method using on/off switching
 - **TVS** - Transient Voltage Suppressor, ESD protection device
 - **ESD** - Electrostatic Discharge, sudden voltage/current from static electricity

- **EMI** - Electromagnetic Interference, unwanted electromagnetic radiation
- **EMC** - Electromagnetic Compatibility, ability to operate without EMI issues
- **AOI** - Automated Optical Inspection, machine vision quality control
- **SMT** - Surface Mount Technology, components mounted on PCB surface
- **HASL** - Hot Air Solder Leveling, PCB surface finish method
- **ENIG** - Electroless Nickel Immersion Gold, premium surface finish
- **Via Tenting** - Covering via with solder mask to prevent solder wicking
- **Via Plugging** - Filling via with epoxy to prevent solder wicking
- **Thermal Via** - Via designed primarily for heat conduction, not electrical connection
- **Ground Plane** - Large continuous copper area connected to ground
- **Copper Pour** - Filling unused PCB area with copper
- **Annular Ring** - Copper ring around drilled hole (pad to hole clearance)
- **Solder Mask Dam** - Solder mask between adjacent pads preventing bridges
- ---

- **Document Revision History**

• Version	• Date	• Changes	• Author
• 1.0	• Jan 2025	• Initial release	• LED Engineering Team
• 2.0	• Jan 2026	• Added thermal simulation section, expanded testing checklist	• LED Engineering Team

- **Notes and Project-Specific Information**

- **Project Name:** _____

- **Designer:** _____

- **Date Started:** _____
- **Target Completion:** _____
- **Special Requirements:**
 - _____
 - _____
 - _____
- **Lessons Learned:**
 - _____
 - _____
 - _____
 - _____
- **Follow-Up Actions:**
 - _____
 - _____
 - _____
 - _____
- **Contact Information for Support**
- **For design consultation, thermal analysis, or manufacturing services:**
 - **Website:** [Https://www.pcbelec.com](https://www.pcbelec.com)
 - **Technical Support:** engineer@pcbjhy.com
 - **LED PCB Manufacturing Service:** sales@pcbjhy.com
 - **Design Services:** Free initial consultation, thermal simulation, DFM review
 - **Manufacturing:** Aluminum, copper, ceramic LED PCBs | Prototyping and production
 - **Quality:** ISO 9001:2015 certified | UL recognized | RoHS compliant

END OF LED PCB DESIGN CHECKLIST